Authors

Tamar K, Simó-Riudalbas M, Garcia-Porta J, Santos X, Llorente G, Vasconcelos R, Carranza S

Abstract

 

The Socotra Archipelago in the Arabian Sea is considered one of the most geo-politically isolated landforms on earth and a center of endemism. The archipelago is located at the western edge of the Indian Ocean and comprises four islands: Socotra, Darsa, Samha, and Abd al Kuri. Here we provide an integrative study on Haemodracon geckos, the sole genus of geckos strictly endemic to the archipelago. The sympatric distribution of Haemodracon riebeckii and H. trachyrhinus on Socotra Island provides a unique opportunity to explore evolutionary relationships and speciation patterns, examining the interplay between possible sympatric and allopatric scenarios. We used molecular data for phylogenetic inference, species delimitation analyses, and to infer the diversification timeframe. Multivariate statistics were used to analyze morphological data. Ecological comparisons were explored for macro-niches using species distribution models and observations were used for micro-habitat use. Haemodracon species exhibit great levels of intraspecific genetic diversity. Our calibration estimates revealed that Haemodracon diverged from its closest relative, the mainland genus Asaccus, in the Eocene, before the detachment of the archipelago. The two Haemodracon species diversified in situ on Socotra Island during the Middle Miocene, after the archipelago’s isolation, into the two reciprocally monophyletic recognized species. Their divergence is associated mostly with remarkable body size differences and micro-habitat segregation, with low levels of climatic and body shape divergences within their sympatric distributions. These results display how ecological, sympatric speciation, and allopatric speciation followed by secondary contact, may both have varying roles at different evolutionary phases.

.

 

Journal: Molecular Phylogenetics and Evolution

DOI: 10.1016/j.ympev.2019.01.009